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Fig. 6. The orthogonal projection of the three water molecules 
O(4), 0(5) and 0(6) with their tetrahedrally coordinated 
neighbours. The large spheres are chloride ions and the 
small ones are the water molecules. The dotted spheres are 
water molecules belonging to magnesium octahedra. 

It is probable that the hydrogen atoms do not lie very 
far from the line of centers of the heavier atoms, since 
the hydrogen-bond angles, assuming linearity of the 
bond, do not deviate by more than 16 ° from tetrahedral. 
This approximately tetrahedral environment of the 

three four-coordinated water molecules, O(4), 0(5) and 
0(6) is illustrated in Figs. 5 and 6. 

This is clearly a very reasonable structure for a hy- 
drated phase in which the stoichiometry is such that 
each ion can have a complete hydration polyhedron 
and there is no direct anion-cation contact. It is inter- 
esting to note that all the distortions from regularity 
necessary to form this pattern of associated octahedra 
are to be found in the hydrogen-bonded [C1-. 6HzO] 
octahedra, and that this distortion has an enantio- 
morphic sense even though the whole crystal structure 
is centrosymmetrical. The more tightly bound ionic 
[Mg + . 6H20] octahedra are completely undistorted 
within the accuracy of the structure determination. 

This research is supported by the Office of Saline 
Water, U.S. Department of the Interior through Grant 
No. 14-01-0001-394. 
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The formulas for phase determination often used for X-ray diffraction data are not immediately ap- 
plicable to neutron diffraction data when atoms with both positive and negative scattering factors are 
present. A formula is presented from which normalized structure factors for the squared structure may 
be calculated from the normalized scattering data, as obtained from a neutron diffraction experiment. 
Since the squared structure is defined as the structure which scatters with the square of the scattering 
factor for each atom in the original structure, the computed structure factors for the squared structure 
will always represent a positive structure and the formulas for phase determination used for X-ray data 
will be applicable. Test calculations are presented. 

Introduction 

The positions of the atoms in the unit cell of a crystal 
can be calculated by Fourier series methods, provided 
that both the amplitudes and phases of the scattered 
neutron waves are known. The amplitudes and phases 

form the coefficients of a Fourier series representing the 
neutron scattering density in the unit cell, and the main 
maxima of such a function correspond to the positions 
of the atomic nuclei. Fourier series methods have been 
employed for several years starting with the investiga- 
tions of Bacon & Pease (1953) and Peterson, Levy & 
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Simonsen (1953, 1954). When the coefficients of the 
series are corrected for thermal effects, they correspond 
to point scatterers and give rise to Fourier maps which 
are comparable to E-maps in X-ray diffraction. These 
latter E-maps are computed with the normalized struc- 
ture factors, E, as coefficients, which are obtained from 
the X-ray intensity data by correcting for thermal mo- 
tion and concentrating the scattering power of the 
atomic electrons into single points located approxim- 
ately at the atomic centers. The meaning of such maps 
in terms of the probability of locating atomic positions 
has been discussed (Karle, Hauptman, Karle & Wing, 
1958). 

As in the case of X-rays, only the amplitudes of the 
scattered waves may be directly obtained from experi- 
ment. However a simple procedure, the symbolic ad- 
dition procedure, for obtaining the required phases 
from the measured intensities has been developed for 
X-rays when a center of symmetry is present (Karle & 
Karle, 1963, 1964a, 1965), and some progress has been 
made in generalizing this procedure to noncentrosym- 
metric crystals (Karle & Karle, 1964b). Although many 
neutron diffraction studies have been facilitated by a 
previous knowledge of the structure from X-ray stud- 
ies, the question naturally arises whether a procedure 
similar to the symbolic addition procedure for X-ray 
diffraction might not be developed for neutron dif- 
fraction, thereby affording a direct method of analysis 
of the neutron data. This would be particularly useful 
when X-ray data were either not available, or when 
available, not sufficiently detailed concerning light 
atom positions. 

It will be seen in the subsequent analysis that an 
immediate application of the phase determining proce- 
dure to neutron diffraction data is not generally feasible. 
The underlying cause is the fact that certain atoms have 
negative scattering factors for neutrons (Bacon, 1962), 
whereas this does not occur for X-rays. It is possible, 
however, that the problem associated with the neutron 
data can be overcome, since a set of intensities may be 
calculated from these data which are closely related to 
those which would have been obtained in a neutron 
diffraction experiment if all the atoms scattered posit- 
ively. In fact, the calculated set of intensities correspond 
approximately to the data which would be obtained 
from a structure in which all the atoms scatter with 
the square of their scattering factors. Such a structure 
is referred to as the squared structure. After standard 
renormalization procedures, there is little difference be- 
tween the intensities corresponding to a structure with 
positive scattering factors for the atoms and those cor- 
responding to the squared structure. When the scat- 
tering factors are the same for all the atoms present, 
the so-called normalized structure factors for the struc- 
ture and its square are identical. 

As the result, then, of computing intensities for the 
squared structure directly from the experimental neu- 
tron diffraction data, a set of intensities would be ob- 
tained which correspond approximately to a structure 

whose atoms scatter positively and whose positions 
have not changed. The next step would involve the 
application of a procedure for phase determination to 
these calculated intensities in order to calculate a Fou- 
rier map for locating the atomic positions. Atom iden- 
tification would reveal which ones have contributed a 
negative scattering factor to the original intensity data. 

We proceed now with an analysis of the phase pro- 
blem for neutrons. In addition, a formula will be de- 
rived for calculating the normalized structure factor 
magnitudes for the squared structure and test calcula- 
tions will be presented. 

Analysis of the problem 

The phase problem for neutron diffraction can be read- 
ily clarified by deriving a phase determining formula 
comparable to one employed for X-ray data. We define 
the quasi-normalized structure factor, ek, for neutron 
diffraction, 

where 

N 

~k=~21/2 ~ bj exp (2zrik. r~), (1) 
j = l  

N 

fin = X b'], (2) 
j= l  

bj is the scattering factor for neutrons of the j t h  atom 
in a unit cell containing N atoms, rj is a vector whose 
components are the coordinates of the j t h  atom, and 
k = h, k, l is a vector whose components are the Miller 
indices of a reflection.* 

We define the squared structure as that structure 
which is identical with the original structure except 
that each atom scatters with the square of the actual 
atomic scattering factor for neutrons. The quasi-nor- 
malized structure factor ek for the squared structure is 
then 

N 
• _ |  ek=fl 4 /2 Z" b 2 exp (27~ik. r j) .  (3) 

j= l  

It follows from (1) that 

N 

ekeh_k=fl21 _r b~ exp (2rcib. r~) 
j = l  

N N 

+fl~l_r ~r b~bk exp [27~i(k. r j + ( h - k ) ,  rk)]. (4) 
j = l  k = l  

j , k  

* For  the case that none of  the indices is zero, the quasi- 
normal ized s tructure factors,  e, are the same as the normal ized 
s tructure factors,  E. When  there are systematic  absences due 
to space group extinctions among  reflections for which at least 
one of  the indices is zero, the quasi-normalized s t ructure  fac- 
tors have to be rescaled to equal  the normal ized s t ructure  
factors. If, for example,  half  of  the reflections are extinctions 
within a part icular  set, such as the hOl reflections in space 
group P21/c, then the appropr ia te  quasi-normalized s t ructure  
factors must be divided by 2 ~, i.e. ehoz/2÷=Ehoz. The rule is 
[e]2(1-q)--]E[2, where q is the fraction of  reflections in the 
set which are space group extinctions. We are considering here 
only primitive unit cells. 
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If we average over all vectors k, the double sum in (4) 
averages to zero, and we obtain with the use of (3), 

~;  : ~ 2 f l 4 1 / 2  <SkCh_k>k , (5) 

Equation (5) is the algebraic equivalent of a family 
of formulas in X-ray diffraction, e.g. the third inequality 
of Karle & Hauptman (1950), the Sayre equation 
(1952), and the algebraic equation of Hughes for equal 
atoms (1953). It is clear from inspection of equation 
(5) that averages taken over structure factors for the 
original structure give structure factors for the squared 
structure. In the comparable phase determining rela- 
tions for X-ray diffraction, this matter, though general- 
ly true, can be quite safely ignored, since X-ray scat- 
tering factors for atoms are always positive numbers* 
and, in addition, the application of the equivalent of 
equation (5) in X-ray diffraction is ordinarily limited 
to those terms involving only the largest structure fac- 
tor magnitudes. In such cases the distinction between 
the phases for the original and squared structures is 
of no consequence. In fact, it is easy to show that when 
all the atoms are alike the quasi-normalized, structure 
factors for X-ray scattering are the same for the original 
and for the squared structure. 

In the case of neutron diffraction where some atoms 
may be scattering with positive scattering factors and 
others with negative scattering factors, the phases and 
magnitudes of the structure factors for the squared 
structure may readily differ from those for the original 
structure. The symbolic addition procedure for phase 
determination in X-ray diffraction utilizes formulas 
related to (5) and proceeds in a step-wise fashion start- 
ing with some phases of known value and others denot- 
ed by symbols. As the determination proceeds new 
phases are added to the list of known phases, since the 
phases determined for the squared structure can be 
used to represent those for the original structure. Since 
this is not the case in neutron diffraction when a signi- 
ficant number of atoms have scattering factors of op- 
posite sign, it is not apparent how the phase determina- 
tion can proceed in a step-wise fashion. Clearly, a dif- 
ferent approach is required for neutron diffraction. 

If we knew the magnitudes of the quasi-normalized 
structure factors for the squared structure, we could 
apply the preocdure for phase determination, since all 
atoms would have positive scattering factors as in the 
case of X-rays. The squared structure could then be 
calculated from the phases so determined and, once it 
was known, the original structure could be derived. In 
the next section it will be shown how the magnitudes 
of the structure factors for the squared structure can 
be determined from the magnitudes of the structure 
factors for the original structure obtained in a neutron 
diffraction experiment. 

* This assumes that the X-ray frequency is not near an ab- 
sorption edge, in which case the scattering factor would be a 
complex number. 

Structure factors for the squared structure 

We now carry out an analysis, similar to that of Haupt- 
man (1964) for the X-ray case, with a view toward ob- 
taining a general formula, defining the magnitudes of 
the quasi-normalized structure factors for the squared 
structure in terms of those for the original structure, 
which is applicable to all the space groups. 

It follows from (1) that 

N N 

lekl 2 -  1 =fl{1 .S Z bjbk exp (2nik.  rile), (6) 
j = l  k = l  

j ~ k  
where 

rjk = rj - re .  
Also, 

N N 
2 2 le;,I 2 -  l= f141Z  Z blb k exp (2nik .  rjk). (7) 

j = l  k = l  
j ~ k  

From (6), we have 
N N N N 

(lekl 2 -  1 ) ( l eh -k ]  2 -  1 ) = f l ~  -2 X ~ X 
j = !  k = l  j ' = l  k ' = l  

j ~ k  j'C-k" 

x b3bkbj,b k, exp {2zci[h. r j lc+k.  (rrk,--rjk)]} . (8) 

If equation (8) is averaged over all vectors k, all terms 
on the right vanish except those for which rj,k, -- rjk = 0. 
There is always at least one pair ( j ' ,k ')  for which the 
latter equation is satisfied, namely j '  = j  and k ' =  k. 

We now define 
Z bl,b k, 

cgk- ; , k '  (9) 
b~be ' 

where the summation is taken over all pairs ( j ' ,k ')  
which satisfy rrk,--r~x=0.  Also i f j = k ,  ese is defined 
to be zero. Unlike the X-ray case where e je> 1 i f j # k ,  
c~j~ for neutron diffraction can be less than one as well 
as larger than one. When there is no overlap in the 
Patterson function c~j~= 1 i f j # k  for both X-rays and 
neutrons. 

It follows from (8) and (9) that 

<([ek[2 -- 1)(ICh-k[2 -- 1) >k 
N N 

2 2 =fl~2.S N bjbko~jk exp (2~ih.  rjk). (10) 
j=l k=l 

j+k  

The right side of (10) resembles the right side of (7). 
In order to facilitate an approximation involving (7), 
we rewrite (10) in the form 

N N 
2 2 (([ekl 2 -  1)(leh-kl z -  1 ) > k = f l ]  -2 S S bjbkO~lk 

j = l  k = l  
N N 

I Z S bZb z" j k~jx exp (21rih. rjx) 
)< j = l  k = l  N N , j # k .  ( l l )  

Z ,~  2 2 bl bk ~Jk 
j = l  k = l  

The coefficient in front of the bracketed term (11) is 
found from (10) when h = 0  to be 
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N N 
2 2 fly2 Z Z bjbkO~j~=((lekl z -1)2)k  . (12) 

j = l  k = l  
j # k  

An approximation is now made replacing the weighted 
average given by the bracketed term by 

N N 
2 2 ~r • bib k exp (2zrih. r~k) 

j = l  k = l  
j , / ,  fl.(le;,I z -  1) 

N N - -  fl~-fl-4 ( 1 3 )  
2 2 Z Z bib k 

j = l  k = l  
j4=k 

using (7) and (2). 
Up to this point the analysis has essentially followed 

that of Haulztman (1964) for the X-ray diffraction case. 
The difference occurs in expression (13). In the X-ray 
case the bracketed term was replaced by an average 
involving the first powers of the atomic scattering fac- 
tors bringing in the structure factor magnitudes of the 
original structure as defined in (6). This is legitimate 
in the X-ray case owing to the close relationship be- 
tween structure factors for the original structure and 
those for the squared structure when all the atomic 
scattering factors are positive. However, for the case 
of neutron diffraction, the approximation used for X- 
ray diffraction cannot be used. Instead, it is necessary 
and, as it turns out, desirable to approximate the ex- 
pression in the bracket of (11) by an average which 
includes the squares of the atomic scattering factors, 
equation (13). We thus obtain an expression for the 
structure factor magnitudes of the squared structure 
in terms of those for the original structure by substitut- 
ing (12) and (13) into (11), 

leh] 2 - 1  ~(fl~flg- '-  1) ((lekl2- 1)(]eh-kl2-- 1))k 
((]ekl2_ 1)2) k (14) 

In analogy to the integrated formulas derived for 
the X-ray case (Karle & Hauptman, 1959), the fol- 
lowing formula is suggested as a possible alternative 
to (14), 

le~,l z -  1 ~_(fl~fl;'- 1) (At'kAt'u-k)k 
(~t2k)k , (15) 

where 

and 

A,k=( ) log levi Mt , (16) 

/ [ekl t 1.\ 
M~ = { (17) 

log [ek[ / ~, \ 

Application 

Several test caluclations were performed in order to 
determine how best to apply formulas (14) and (15), 
whether either appears to be superior, and the reliabili- 
ty with which the larger I~'l can be determined from 
these formulas. The calculations were lzerformed on 
naphthalene in space group P21/a (Abrahams, Robert- 
son & White, 1949; Cruickshank, 1957), myoinositol 

in space group P21/c (Rabinowitz & Kraut, 1964), and 
sucrose in space group P21 (Brown & Levy, 1963), 
having 36, 192 and 90 atoms per unit cell, respectively. 
Values of the magnitudes of quasi-normalized structure 
factors ]el, were computed from the published struc- 
tures and the neutron scattering factors for atoms em- 
ploying equation (1). The number computed corres- 
ponded approximately to the number of independent 
data obtained from the copper sphere of scattering for 
X-rays, 767 for naphthalene, 2975 for myoinositol and 
2749 for sucrose. In applying (14) and (15) the basic 
deck of independent data is expanded to include all 
reflections according to the space group equivalences, 
including the space group absences. Quasi-normalized 
structure factor magnitudes for the squared structure, 
[e'], were computed from (3) in order to compare the 
results from (14) and (15) with the correct Id] for the 
given structures. On present day fast computers, ]e'l 
can be computed from (14) or (15) for all the independ- 
ent reflections mentioned above in less than an hour 
for each substance. 

In computing (14) and (15) the averages, 

((lekl 2 -  1)2)k, (18) 
and 

(At2k)k (19) 

are computed from the data deck, rather than from 
theoretical considerations. In order to compensate 
further for possible statistical variation in the sample 
of data, it is suggested that in computing the averages 
( ( [ ek ]  2 -  1)(]eh_k] 2 -  1)) k in (14) and ( A t , k A t , h _ k >  k in (15), 
the number of terms, v, be obtained from 

X [(]ekl 2 -  1)2 + ([ea_kl2 _ 1 )2] 
k 

v = 2((ekl2_ 1)2) k , (20) 
and 

z (A,~k + A,~h_k) 
k 

v= 2(At2k) k (21) 

respectively instead of using the actual numerical count. 
Theoretical values are to be used for the denominators 
in (20) and (21). Thus, when the sample of data is a 
good statistical sample, expressions (20) and (21) coin- 
cide with the actual numerical count. The denominator 
of (20) is 2 for space group P1 and 4 for centrosym- 
metric crystals. An appropriate intermediate value 
should be used for noncentrosymmetric crystals having 
centrosymmetric projections. This value is readily cal- 
culated from the proportion of centrosymmetric and 
noncentrosymmetric reflections in the data. The value 
t = 3 has been employed here. The denominator of (21) 
when t = 3  is 11.29 for space group P1 and 24-28 for 
centrosymmetric crystals*. 

* T h e s e  v a l u e s  a r e  o b t a i n e d  b y  c a r r y i n g  o u t  t h e  c a l c u l a t i o n s  
of the expected values, employing the probability distributions 
of Wilson (1949) for space groups P1 and Pi, in which the 

N 
transformation of variable, ~=F/(~r bj2)~, has been made. 

j = l  
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Tables 1 and 2 show some typical calculations of 
structure factors for the squared structure, [e'[c, using 
(15) for naphthalene and myoinositol respectively. The 
results for sucrose were similar. In the course of the 
calculations it was found that the results were improved 
for myoinositol by using (20) cr (21) instead of the 
actual numerical count and that the largest le'l values 
for myoinositol were computed somewhat more ac- 
curately by the integrated formula, (15), rather than 
by (14). None of these differences were observed for 
naphthalene or sucrose. At the end of the calculations, 
the results were listed in decreasing order of the values 
of le'le. The column labeled lel shows the structure 
factor magnitudes which would be observed from an 
experiment with neutrons, the column labeled le'lo 
shows the magnitudes which would be observed for 
the squared structure and the column labeled I~'1~ shows 
the structure factor magnitudes for the squared struc- 
ture calculated by use of (15) from a knowledge of the 

Table 1. Comparison of the I~1 which would be observed 
from experiment, the [e'[o which wouM be observed from 
the squared structure and the ]e']c which were calculated 

by (15)from the [e] for napthalene 
The last column gives the number of terms contributing to (15). 
The values shown were chosen from among the largest le'[c. 

hkl lel le'lo Iglc no. 
608 1.93 4-80 4.65 445 
407 3.30 3.03 3.16 604 
60g 0-78 2.42 3.05 643 
607 2.83 2.60 3-02 494 
210 0.86 2.46 2.88 1104 
52I 0.87 2.76 2.66 719 
547 0.69 1.98 2.62 349 
136 1.40 2.93 2.58 615 
41i 2.29 2.52 2.54 879 
217 2.86 2-50 2.54 649 
35] 1.10 2.40 2.42 539 
73] 1.28 2.41 2.39 479 
258 0.70 0.45 2-35 350 
713 1.06 2.47 2.34 559 

Table 2. Compar&on 
from experiment, the 
the squared structure 

The 
The 

of the lel which would be observed 
le'lo which wouM be observed from 
and the le'lc which were calculated 

by (15) from the lel for myoinositol 
last column gives the number of terms contributing to (15). 
values shown were chosen from anomg the largest le'lc. 

hkl Icl le'lo Iglc no. 
5 0 i0 3"79 9" 13 7"22 2874 
5 0 g 3"82 5"84 5"47 3426 
4 8 5 3"07 3"54 4"57 2519 
1 10 i3 0.37 3"00 4"54 1650 
1 6 i3 4-75 4"22 4"31 2430 
4 0 i ]  1 "49 4-02 4" 18 2817 
4 6 7 4"92 3"48 4" 15 2634 
4 11 5 0"88 3.23 4"13 2015 
5 9 10 3"29 3"61 4"05 1749 
4 10 5 0"87 1-84 4"00 2183 
5 6 13 0"04 1"32 3"97 1818 
5 6 12 1"82 2"48 3"96 1920 
6 4 i 2"96 3"53 3"89 3115 
7 0 6 1"61 3"66 3"89 2851 
3 9 ~; 4"56 1"54 3-81 2435 
4 4 i3 2"77 2"91 3"80 1956 

[el values. The last column shows the actual number 
of terms contributing to the calculation. 

The listings in Tables 1 and 2 were chosen from 
among the 28 largest [e'le values for naphthalene and 
the 44 largest values for myoinositol, resp. They were 
chosen to show the general trend and the extremes in 
agreement between [e'[o and [e'le. Several conclusions 
are apparent: 

1. The largest [e'[o are well reproduced by the cal- 
culated [e'le. 

2. The largest values of [C'[o and ]e'le are often as- 
sociated with smaller values of ]el. 

3. Occasionally large values of ]e'[e are associated 
with small values of [8'[o. 

In an actual application to structure determination 
the investigator would have only ]e] and [e'le values 
available. It would not be apparent then when large 
[e'[c are associated with small le'[o. We note in Table 1 
that the first such case for naphthalene occurs for h-- 
(2,5,8), the twenty-seventh vector in the complete 
listing. Some moderate values of [e'[o associated with 
large [e'[c are seen to occur for myoinositol in Table 2. 
If the entire listings were available to the reader, it 
would be noted that such discrepancies increase in 
number and severity as one proceeds down the listing. 
Since the introduction of several large [e']e which really 
should be small, as indicated by the associated [e'[o, 
is undesirable in a phase determining procedure, it is 
important to consider how this might be avoided. There 
are several criteria which may be effectively employed, 
particularly in the initial stages of the phase determina- 
tion, as follows: 

(a) The results for [e'[e may be accepted as given 
only down to some chosen cut-off value for [e'[e. 

(b) Below the cut-off value for [e'[e, a minimum 
value for the ]e], which are observed from experiment, 
would be required before accepting the computed 
quantity [e'[e. 

(c) The somewhat smaller [e'[e values associated with 
the largest values of [e[ may be accepted. 

The justification for criterion (a) is that generally 
there is good agreement between the very largest [e'[e 
and their corresponding [e'[o. Criterion (b) implies that 
if a particular value of [e] is observed to be quite small, 
it is unlikely that the corresponding ]e'[o would reach 
an unusually large value. Similar considerations relate 
to criterion (c). The proper application of criterion (b) 
has the desired effect of eliminating most of the [e'le 
which are calculated to be much too large compared 
with the corresponding ]e'[o, and only a few of the 
significant ones. An effective application of criteria (a) 
and (b) to naphthalene would involve, for example, the 
acceptance of all le'[e down to a cut-off value of 2.2 
and the elimination of [e'[e below this point for which 
[e[ > 0.5. It would make little difference if the elimina- 
tion criterion [el > 0.5 were applied at the beginning of 
the listing. Criterion (c) could be implemented by 
specifying, for example, that all ]e'[e> 1"7 be accepted 
if [el > 2.0. Similarly for myoinositol, all ]e'[e could be 
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accepted down to a cut-off value of 4.0, and below 
this value the le'lc would be eliminated if lel < 1.0 and 
accepted down to le '1c>2-8 if Icl >3.0. The numbers 
used for criteria (a), (b) and (c) with myoinositol are 
larger than those for napthalene because the number 
of atoms in the asymmetric unit is larger and the le'lc 
values are larger for myoinositol. The numbers used 
here in the application of the criteria are evidently 
somewhat arbitrary but should serve as a guide. It is 
not clear at this point how useful the introduction of 
additional statistical considerations would be for the 
present, and therefore the investigation of such matters 
is deferred. It might be pointed out however that 
further study along such lines would include considera- 
tions such as the number of atoms in the asymmetric 
unit, the relative amount of negative scattering matter, 
the number of terms contributing to a particular cal- 
culation and the variance of the individual terms. 

Procedures for phase determination are particularly 
dependent in their initial stages on relationships among 
the largest le'l values. Also, it is desirable to have at 
least ten phases among the larger le'l values per atom 
in the asymmetric unit for the computation of a Fou- 
rier series. Thus the success of a procedure for struc- 
ture determination, based upon the calculations pre- 
sented here, depends on how well the computed larger 
[e'lc are correlated with the larger le'lo. 

Aside from phase considerations, it is apparent that 
useful information should derive from comparing Pat- 
terson functions computed from the coefficients I~12 
and I~'12 when both positive and negative scattering 
matter are present. 

Mr Stephen Brenner wrote the computing programs 
and carried out all the calculations. I am indebted to 
him for his very fine cooperation. The thought to 
investigate this problem arose from a conversation with 
Dr Carroll K.Johnson of the Oak Ridge National 
Laboratory. 
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The relationship between the methods of Dickerson (1959), Rollett & Sparks (1960), and Hamilton, 
Rollett & Sparks (1965) (HRS) is discussed, together with a short account of why the first two methods 
are unsatisfactory. An alternative iterative method (the method of 'shortest path') of solving the layer 
scaling equations of HRS is given which converges faster than the solution given by HRS. An exact 
solution of the equations of HRS is given which may be applied to situations where a simple weighting 
scheme may be used. The method of 'shortest path' may be important in protein crystallography where 
setting up the normal matrix may mean scanning 100000 reflexions and therefore the speed of conver- 
gence is of paramount importance. 

Introduction 

The purpose of this paper is threefold: 
(a) To give an account of the relationship between 
the methods of Dickerson (1958), Rollett & Sparks 
(1960), and Hamilton, Rollett & Sparks (1965). 

(b) To present an alternative iterative method (the 
method of 'shortest path') of solving the scaling equa- 
tions of Hamilton, Rollett & Sparks (1965; we will refer 
to this paper as HRS), which converges faster than the 
solution given by these authors. The method of short- 
est path has the additional advantages that no fudge 


